Explicação xG

What is xG?

Very simply, xG (or expected goals) is the probability that a shot will result in a goal based on the characteristics of that shot and the events leading up to it. Some of these characteristics/variables include:

Every shot is compared to thousands of shots with similar characteristics to determine the probability that this shot will result in a goal. That probability is the expected goal total. An xG of 0 is a certain miss, while an xG of 1 is a certain goal. An xG of .5 would indicate that if identical shots were attempted 10 times, 5 would be expected to result in a goal.

There are a number of xG models that use similar techniques and variables, which attempt to reach the same conclusion. The model that FBref uses is provided by Opta. Opta's xG model includes a number of factors above just factors such as the location and angle. Their model also accounts for the clarity of the shooter's path to the goal, the amount of pressure the shooter is under from defensive players, the position of the goalkeeper, and more. That means that their xG model factors in the defense and goalkeeping when determining the odds of the shot reaching the goal.

Take this Diego Jota goal vs Southampton for example. The shot was taken directly in front of the goal from very close range. It's a very good chance. Using an older model that accounts for location, angle, pass type, and such, it would have a 0.68 xG. However, Opta's model also accounts for the fact that the goalkeeper is out of position and there's no defender in the way, which boosts the xG of this shot even higher, to 0.90.

xG does not take into account the quality of player(s) involved in a particular play. It is an estimate of how the average player or team would perform in a similar situation.

How xG is used

xG has many uses. Some examples are:

Penalty Kicks

Each penalty kick is worth .79 xG since all penalty kicks share the same characteristics. Comparing a player's goals from penalty kicks to their penalty kick xG can indicate a player's penalty kicking ability. Likewise, we can do the same for goalkeepers in these situations.

FBref's xG totals include penalty kicks unless otherwise noted. For xG excluding PK, we recommend using npxG (non-penalty expected goals).

How we calculate xG totals for a single offensive possession

In some cases, a player or team's xG totals do not equal the sum of their shots. For instance, a team may attempt multiple shots in a single possession, but it is likely that these shots are contingent upon the outcome of the previous shot(s).

Take for example, this match between Schalke 04 and Nürnberg:

View Match Highlights on YouTube

In the 78th minute, Nürnberg attempted three shots which ultimately led to a goal. Hanno Behrens attempts a shot that is saved, but he is able to take a second shot as the ball is deflected off the defender. The second shot goes off the woodwork, which allows Adam Zreľák to easily tap it in. According to Opta's expected goals model:

The sum of these three shots is 1.67 expected goals, even though it is impossible to score more than one goal in a single move. To solve this problem, we find the probability that the defending team does not allow a goal in this possession. In this case, the calculation is:

(1 - .41) x (1 - .47) x (1 - .79) = .0657 or a 6.57% probability that Schalke does not allow a goal.

To find Nürnberg's xG, we simply subtract that probability from 1:

1 - .0657 = .9343 xG

In other words, we estimate that an average team in a similar situation would be expected to score a goal 93.43% of the time.

We use a similar method when calculating xG for individual players. Adam Zreľák receives .79 xG from his single shot while Hanno Behrens receives:

1 - (1 - .41) x (1 - .47) = .6873 xG

This shows why a team or player's total xG may not equal the sum of the xG from their shots and why a team's total xG may not equal the sum of the xG from their players.

Possessions that include a penalty kick

Similarly, we include shots taken from a rebound after a penalty kick with xG from penalty kicks. Take this Marco Reus penalty kick for example:

Since the second shot is a result of the first, we use the same probabilistic method in the previous example. Rather than a total 1.71 xG (.79 + .92), the calculation is:

1 - (1 - .79) * (1 - .92) = .9832 expected goals

However, since the second shot is also considered to be a part of the penalty kick xG, Reus gets 0 npxG (non-penalty expected goals) on this play.

Note: We treat corner kicks and free kicks as a new possession, not a continuation of the previous possession, but are continuing to study the issue.

O que é o Post-Shot xG (PSxG)?

O xG normal, ou o que pode ser considerado o "Pre-Shot xG", é calculado considerando todos os chutes, no momento do chute, sem saber a qualidade da tentativa de chute. Isso não inclui somente os chutes que acertam o alvo, mas também os que são desviados para longe dele. O Post-Shot xG é calculado após o chute ser dado, após sabermos se o chute acertou o alvo, levando em conta a qualidade do chute. Assim como com o xG, o PSxG é oferecido pela Opta e é melhor explicado aqui.

Todos os chutes que forem para longe do gol terão PSxG igual a zero, já que há 0% de chance deste levar a um gol.

Ao avaliar a capacidade de defesa de um goleiro, só queremos incluir os chutes que tenham acertado o gol, já que estes são os chutes onde o goleiro pode ter algum impacto. Assim, usamos o PSxG para estimar a qualidade dos chutes que eles enfrentaram.

O que são xA (assistência esperada) e xAG (gol assistido esperado)? Qual a diferença entre eles?

xA, ou assistência esperada, é a probabilidade de que determinado passe realizado se torne uma assistência de gol. Esta estatística desenvolvida pela Opta atribui uma probabilidade a todos os passes com base no tipo de passe, na localização em campo, na fase do jogo e na distância percorrida. Os jogadores recebem pontos xAs por cada passe realizado, independentemente de um chute a gol ter ocorrido ou não.

Para isolar apenas os pontos xGs em passes de assistência para um chute a gol, há os Gols Assistidos Esperados (xAG). Isso indica a capacidade de um jogador de criar chances de gol sem ter que depender do efetivo resultado do chute ou da sorte/habilidade do jogador que chutou. O jogador só recebe pontos xAG quando faz um chute a gol após um passe realizado.

Usamos pontos xG+xAG para contribuições de gols, já que as contribuições de gols dos jogadores geralmente são Gols + Assistências e isso corresponde melhor a esse padrão.

Até outubro de 2022, usávamos pontos xA para indicar gols assistidos esperados (agora pontos xAG). Quando mudamos nosso provedor de dados para a Opta, eles forneceram sua versão do ponto xA descrita acima. Fizemos a mudança de nome para ponto xAG. Opta: o que são assistências esperadas.

Onde encontrar o xG

O xG de Time, xG contra e o diferencial xG podem ser encontrados nas tabelas de liga, tal como essa:

Primeira Liga Table
Cl Equipe MP V E D GP GC GD Pt xG xGA xGD
1Manchester City3832249523+729884.324.7+59.6
2Liverpool3830718922+679773.728.8+44.9
3Chelsea3821986339+247258.636.4+22.2
4Tottenham38232136739+287154.947.1+7.8
5Arsenal38217107351+227060.154.2+5.8
6Manchester Utd38199106554+116661.450.6+10.8
7Wolves38169134746+15752.142.1+10.1
8Everton38159145446+85449.745.7+4.0
9Leicester City38157165148+35252.443.7+8.7
10West Ham38157165255-35247.661.9-14.3
11Watford38148165259-75048.259.2-11.0
12Crystal Palace38147175153-24947.650.1-2.5
13Newcastle Utd38129174248-64539.153.6-14.5
14Bournemouth38136195670-144553.357.2-3.9
15Burnley38117204568-234044.462.1-17.7
16Southampton38912174565-203946.955.1-8.2
17Brighton3899203560-253635.359.1-23.8
18Cardiff City38104243469-353442.461.5-19.1
19Fulham3875263481-472641.368.2-26.8
20Huddersfield3837282276-541628.860.9-32.2

xG de jogador, npxG e o xA podem ser encontrados nas páginas dos times, tal como essa:

Estatísticas Padrão 2018-2019 Manchester City: Premier League Table
Tempo de jogo Desempenho Esperado Progressão A cada 90 minutos
Jogador Nação Pos. Idade MP Inícios Min. 90s Gols Assis. G+A G-PB PB PT CrtsA CrtV xG npxG xAG npxG+xAG PrgC PrgP PrgR Gols Assis. G+A G-PB G+A-PB xG xAG xG+xAG npxG npxG+xAG
Edersonbr BRAG2438383.42038.0011000200.00.00.10,10300,000,030,030,000,030,000,000,000,000,00
Aymeric Laportees ESPZG2435343.05734.0336300303.03.00.83,89429490,090,090,180,090,180,090,020,110,090,11
Bernardo Silvapt PORLT,AT2336312.85431.77714700307.47.47.815,21521562770,220,220,440,220,440,230,250,480,230,48
Raheem Sterlingeng ENGAT2334312.77130.81792617003013.713.79.623,3155874360,550,290,840,550,840,440,310,760,440,76
Sergio Agüeroar ARGAT3033312.45927.32182919224018.116.55.021,581762530,770,291,060,700,990,660,180,850,600,79
Kyle Walkereng ENGZG2833302.77930.9112100300.80.81.92,783220920,030,030,060,030,060,030,060,090,030,09
David Silvaes ESPLT3233282.40126.76814600207.87.88.516,31182702220,220,300,520,220,520,290,320,610,290,61
Fernandinhobr BRALT3329272.37726.4134100501.61.63.04,558236290,040,110,150,040,150,060,110,170,060,17
İlkay Gündoğande GERLT2731232.13723.7639600304.14.14.38,482205910,250,130,380,250,380,170,180,350,170,35
Leroy Sanéde GERAT2231211.86720.71010201000106.76.77.414,184673410,480,480,960,480,960,320,360,680,320,68
John Stoneseng ENGZG2424201.76419.6000000100.30.30.20,64411850,000,000,000,000,000,020,010,030,020,03
Riyad Mahrezdz ALGAT,LT2727141.34314.97411701005.54.74.69,387731910,470,270,740,470,740,370,310,680,320,62
Nicolás Otamendiar ARGZG3018141.23613.7000000101.31.30.21,5279230,000,000,000,000,000,100,010,110,100,11
Oleksandr Zinchenkoua UKRZG2114141.15112.8033000100.20.21.51,74795940,000,230,230,000,230,010,120,130,010,13
Vincent Kompanybe BELZG3217131.22413.6101100600.30.30.00,3178330,070,000,070,070,070,020,000,020,020,02
Kevin De Bruynebe BELLT27191197510.8224200201.41.45.77,050109880,180,180,370,180,370,130,520,650,130,65
Benjamin Mendyfr FRAZG24101090010.0055000100.20.21.61,84870590,000,500,500,000,500,020,160,180,020,18
Danilobr BRAZG271198079.0101100100.40.40.20,62077330,110,000,110,110,110,050,020,070,050,07
Gabriel Jesusbr BRAAT212981.03611.573106111011.210.52.312,735211280,610,260,870,520,780,970,201,170,911,11
Fabian Delpheng ENGZG281187258.1011000110.10.10.30,42059230,000,120,120,000,120,010,040,060,010,06
Phil Fodeneng ENGLT181333353.7101100002.12.10.93,02318350,270,000,270,270,270,570,230,800,570,80
Philippe Sandlernl NEDZG2100
Arijanet Muricxk KVXG1900
Claudio Bravocl CHIG3500
Total do time26.7384183.42038.09171162883444184.381.365.5146,71325242924122,391,874,262,324,182,221,723,942,143,86
Total do time26.7384183.42038.09171162883444184.381.365.5146,71325242924122,391,874,262,324,182,221,723,942,143,86

Os gols previstos também podem ser encontrados em várias páginas diferentes, como as estatísticas de jogador de liga, relatórios de partida, páginas de jogador e registros de partidas de jogador.

Competições FBref com dados xG