Explicación de xG
What is xG?
Very simply, xG (or expected goals) is the probability that a shot will result in a goal based on the characteristics of that shot and the events leading up to it. Some of these characteristics/variables include:
- Location of shooter: How far was it from the goal and at what angle on the pitch?
- Body part: Was it a header or off the shooter's foot?
- Type of pass: Was it from a through ball, cross, set piece, etc?
- Type of attack: Was it from an established possession? Was it off a rebound? Did the defense have time to get in position? Did it follow a dribble?
Every shot is compared to thousands of shots with similar characteristics to determine the probability that this shot will result in a goal. That probability is the expected goal total. An xG of 0 is a certain miss, while an xG of 1 is a certain goal. An xG of .5 would indicate that if identical shots were attempted 10 times, 5 would be expected to result in a goal.
There are a number of xG models that use similar techniques and variables, which attempt to reach the same conclusion. The model that FBref uses is provided by Opta. Opta's xG model includes a number of factors above just factors such as the location and angle. Their model also accounts for the clarity of the shooter's path to the goal, the amount of pressure the shooter is under from defensive players, the position of the goalkeeper, and more. That means that their xG model factors in the defense and goalkeeping when determining the odds of the shot reaching the goal.
Take this Diego Jota goal vs Southampton for example. The shot was taken directly in front of the goal from very close range. It's a very good chance. Using an older model that accounts for location, angle, pass type, and such, it would have a 0.68 xG. However, Opta's model also accounts for the fact that the goalkeeper is out of position and there's no defender in the way, which boosts the xG of this shot even higher, to 0.90.
xG does not take into account the quality of player(s) involved in a particular play. It is an estimate of how the average player or team would perform in a similar situation.
How xG is used
xG has many uses. Some examples are:
- Comparing xG to actual goals scored can indicate a player's shooting ability or luck. A player who consistently scores more goals than their total xG probably has an above average shooting/finishing ability.
- A team's xG difference (xG minus xG allowed) can indicate how a team should be performing. A negative goal difference but a positive xG difference might indicate a team has experienced poor luck or has below average finishing ability.
- xG can be used to assess a team's abilities in various situations, such as open play, from a free kick, corner kick, etc. For example, a team that has allowed more goals from free kicks than their xGA from free kicks is probably below average at defending these set pieces.
- A team's xGA (xG allowed) can indicate a team's ability to prevent scoring chances. A team that limits their opponent's shots and more importantly, limits their ability to take high probability shots will have a lower xGA.
Penalty Kicks
Each penalty kick is worth .79 xG since all penalty kicks share the same characteristics. Comparing a player's goals from penalty kicks to their penalty kick xG can indicate a player's penalty kicking ability. Likewise, we can do the same for goalkeepers in these situations.
FBref's xG totals include penalty kicks unless otherwise noted. For xG excluding PK, we recommend using npxG (non-penalty expected goals).
How we calculate xG totals for a single offensive possession
In some cases, a player or team's xG totals do not equal the sum of their shots. For instance, a team may attempt multiple shots in a single possession, but it is likely that these shots are contingent upon the outcome of the previous shot(s).
Take for example, this match between Schalke 04 and Nürnberg:
View Match Highlights on YouTube
In the 78th minute, Nürnberg attempted three shots which ultimately led to a goal. Hanno Behrens attempts a shot that is saved, but he is able to take a second shot as the ball is deflected off the defender. The second shot goes off the woodwork, which allows Adam Zreľák to easily tap it in. According to Opta's expected goals model:
- Behrens' first shot with the goalkeeper in his way = .41 xG
- Behrens' second shot with the goalkeeper out of position but a defender in the way = .47 xG
- Zreľák's shot with an open net = .79 xG
The sum of these three shots is 1.67 expected goals, even though it is impossible to score more than one goal in a single move. To solve this problem, we find the probability that the defending team does not allow a goal in this possession. In this case, the calculation is:
(1 - .41) x (1 - .47) x (1 - .79) = .0657
or a 6.57% probability that Schalke does not allow a goal.
To find Nürnberg's xG, we simply subtract that probability from 1:
1 - .0657 = .9343 xG
In other words, we estimate that an average team in a similar situation would be expected to score a goal 93.43% of the time.
We use a similar method when calculating xG for individual players. Adam Zreľák receives .79 xG from his single shot while Hanno Behrens receives:
1 - (1 - .41) x (1 - .47) = .6873 xG
This shows why a team or player's total xG may not equal the sum of the xG from their shots and why a team's total xG may not equal the sum of the xG from their players.
Possessions that include a penalty kick
Similarly, we include shots taken from a rebound after a penalty kick with xG from penalty kicks. Take this Marco Reus penalty kick for example:
- As mentioned above, the penalty kick attempt = .79 xG
- The second shot after the rebound, from 2 yards and with the goalkeeper unrecovered from the save = .92 xG
Since the second shot is a result of the first, we use the same probabilistic method in the previous example. Rather than a total 1.71 xG (.79 + .92), the calculation is:
1 - (1 - .79) * (1 - .92) = .9832 expected goals
However, since the second shot is also considered to be a part of the penalty kick xG, Reus gets 0 npxG (non-penalty expected goals) on this play.
Note: We treat corner kicks and free kicks as a new possession, not a continuation of the previous possession, but are continuing to study the issue.
¿Qué es Post-Shot xG? (PSxG)?
El xG regular, o lo que se puede considerar "Pre-Shot xG", se calcula considerando todos los tiros en el momento del tiro sin conocer la calidad del intento de tiro. No solo incluye tiros que dan en el blanco, sino también tiros detenidos o desviados. El Post-Shot xG se calcula después de que se ha realizado el tiro, una vez que se sabe que el tiro está en el objetivo, teniendo en cuenta la calidad del tiro. Al igual que con xG, Opta proporciona PSxG y se explica con más detalle here.
Todos los tiros desviados tendrán un PSxG de cero ya que hay un 0 % de probabilidad de que esta trayectoria conduzca a gol.
Al evaluar la capacidad de parada de tiro de un portero, solo queremos incluir los tiros a puerta, ya que estos son los tiros en los que el portero puede tener un impacto. Por ello, utilizamos el PSxG para estimar la calidad de tiros en los que se han enfrentado.
¿Qué es xA (Asistencias esperadas) y xAG (Goles esperados con asistencia)? ¿En qué se diferencian?
xA, o asistencias esperadas, es la probabilidad de que un determinado pase completado se convierta en una asistencia a gol. Esta estadística desarrollada por Opta asigna una probabilidad a todos los pases basados en el tipo de pase, la ubicación en el campo, la fase de juego y la distancia recorrida. Los jugadores reciben xA por cada pase completado, independientemente de si se ha producido un tiro o no.
Para aislar los xG en los pases que asisten a un tiro, hay Goles esperados con asistencia (xAG). Esto indica la capacidad de un jugador para crear ocasiones de gol sin tener que depender del resultado real del tiro o de la suerte/habilidad del tirador. Los jugadores reciben xAG únicamente cuando se realiza un tiro tras un pase completado.
Utilizamos xG+xAG para indicar las participaciones en los goles, ya que estas suelen ser goles + asistencias y se ajustan mejor a la norma.
Antes de octubre de 2022, utilizábamos xA para referirnos a los Goles esperados con asistencia (ahora xAG). Cuando sustituimos nuestro proveedor de datos por Opta, nos proporcionaron su versión de xA descrita anteriormente. Hicimos el cambio de nombre a xAG. Opta: Qué son las asistencias esperadas.
Dónde encontrar los xG
Los xG del equipo, los xG en contra y los xG diferenciales se pueden encontrar en las tablas de ligas, como esta:
RL | Equipo | PJ | PG | PE | PP | GF | GC | DG | Pts | xG | xGA | xGD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Manchester City | 38 | 32 | 2 | 4 | 95 | 23 | +72 | 98 | 84.3 | 24.7 | +59.6 |
2 | Liverpool | 38 | 30 | 7 | 1 | 89 | 22 | +67 | 97 | 73.7 | 28.8 | +44.9 |
3 | Chelsea | 38 | 21 | 9 | 8 | 63 | 39 | +24 | 72 | 58.6 | 36.4 | +22.2 |
4 | Tottenham | 38 | 23 | 2 | 13 | 67 | 39 | +28 | 71 | 54.9 | 47.1 | +7.8 |
5 | Arsenal | 38 | 21 | 7 | 10 | 73 | 51 | +22 | 70 | 60.1 | 54.2 | +5.8 |
6 | Manchester Utd | 38 | 19 | 9 | 10 | 65 | 54 | +11 | 66 | 61.4 | 50.6 | +10.8 |
7 | Wolves | 38 | 16 | 9 | 13 | 47 | 46 | +1 | 57 | 52.1 | 42.1 | +10.1 |
8 | Everton | 38 | 15 | 9 | 14 | 54 | 46 | +8 | 54 | 49.7 | 45.7 | +4.0 |
9 | Leicester City | 38 | 15 | 7 | 16 | 51 | 48 | +3 | 52 | 52.4 | 43.7 | +8.7 |
10 | West Ham | 38 | 15 | 7 | 16 | 52 | 55 | -3 | 52 | 47.6 | 61.9 | -14.3 |
11 | Watford | 38 | 14 | 8 | 16 | 52 | 59 | -7 | 50 | 48.2 | 59.2 | -11.0 |
12 | Crystal Palace | 38 | 14 | 7 | 17 | 51 | 53 | -2 | 49 | 47.6 | 50.1 | -2.5 |
13 | Newcastle Utd | 38 | 12 | 9 | 17 | 42 | 48 | -6 | 45 | 39.1 | 53.6 | -14.5 |
14 | Bournemouth | 38 | 13 | 6 | 19 | 56 | 70 | -14 | 45 | 53.3 | 57.2 | -3.9 |
15 | Burnley | 38 | 11 | 7 | 20 | 45 | 68 | -23 | 40 | 44.4 | 62.1 | -17.7 |
16 | Southampton | 38 | 9 | 12 | 17 | 45 | 65 | -20 | 39 | 46.9 | 55.1 | -8.2 |
17 | Brighton | 38 | 9 | 9 | 20 | 35 | 60 | -25 | 36 | 35.3 | 59.1 | -23.8 |
18 | Cardiff City | 38 | 10 | 4 | 24 | 34 | 69 | -35 | 34 | 42.4 | 61.5 | -19.1 |
19 | Fulham | 38 | 7 | 5 | 26 | 34 | 81 | -47 | 26 | 41.3 | 68.2 | -26.8 |
20 | Huddersfield | 38 | 3 | 7 | 28 | 22 | 76 | -54 | 16 | 28.8 | 60.9 | -32.2 |
Los xG, npxG y xA del jugador se pueden encontrar en las páginas de los equipos, como esta:
Tiempo Jugado | Rendimiento | Expectativa | Progresión | Por 90 Minutos | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jugador | País | Posc | Edad | PJ | Titular | Mín | 90 s | Gls. | Ass | G+A | G-TP | TP | TPint | TA | TR | xG | npxG | xAG | npxG+xAG | PrgC | PrgP | PrgR | ||||||||||
Ederson | br BRA | PO | 24 | 38 | 38 | 3,420 | 38.0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.1 | 0.1 | 0 | 3 | 0 | 0.00 | 0.03 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Aymeric Laporte | es ESP | DF | 24 | 35 | 34 | 3,057 | 34.0 | 3 | 3 | 6 | 3 | 0 | 0 | 3 | 0 | 3.0 | 3.0 | 0.8 | 3.8 | 94 | 294 | 9 | 0.09 | 0.09 | 0.18 | 0.09 | 0.18 | 0.09 | 0.02 | 0.11 | 0.09 | 0.11 |
Bernardo Silva | pt POR | CC,DL | 23 | 36 | 31 | 2,854 | 31.7 | 7 | 7 | 14 | 7 | 0 | 0 | 3 | 0 | 7.4 | 7.4 | 7.8 | 15.2 | 152 | 156 | 277 | 0.22 | 0.22 | 0.44 | 0.22 | 0.44 | 0.23 | 0.25 | 0.48 | 0.23 | 0.48 |
Raheem Sterling | eng ENG | DL | 23 | 34 | 31 | 2,771 | 30.8 | 17 | 9 | 26 | 17 | 0 | 0 | 3 | 0 | 13.7 | 13.7 | 9.6 | 23.3 | 155 | 87 | 436 | 0.55 | 0.29 | 0.84 | 0.55 | 0.84 | 0.44 | 0.31 | 0.76 | 0.44 | 0.76 |
Sergio Agüero | ar ARG | DL | 30 | 33 | 31 | 2,459 | 27.3 | 21 | 8 | 29 | 19 | 2 | 2 | 4 | 0 | 18.1 | 16.5 | 5.0 | 21.5 | 81 | 76 | 253 | 0.77 | 0.29 | 1.06 | 0.70 | 0.99 | 0.66 | 0.18 | 0.85 | 0.60 | 0.79 |
Kyle Walker | eng ENG | DF | 28 | 33 | 30 | 2,779 | 30.9 | 1 | 1 | 2 | 1 | 0 | 0 | 3 | 0 | 0.8 | 0.8 | 1.9 | 2.7 | 83 | 220 | 92 | 0.03 | 0.03 | 0.06 | 0.03 | 0.06 | 0.03 | 0.06 | 0.09 | 0.03 | 0.09 |
David Silva | es ESP | CC | 32 | 33 | 28 | 2,401 | 26.7 | 6 | 8 | 14 | 6 | 0 | 0 | 2 | 0 | 7.8 | 7.8 | 8.5 | 16.3 | 118 | 270 | 222 | 0.22 | 0.30 | 0.52 | 0.22 | 0.52 | 0.29 | 0.32 | 0.61 | 0.29 | 0.61 |
Fernandinho | br BRA | CC | 33 | 29 | 27 | 2,377 | 26.4 | 1 | 3 | 4 | 1 | 0 | 0 | 5 | 0 | 1.6 | 1.6 | 3.0 | 4.5 | 58 | 236 | 29 | 0.04 | 0.11 | 0.15 | 0.04 | 0.15 | 0.06 | 0.11 | 0.17 | 0.06 | 0.17 |
İlkay Gündoğan | de GER | CC | 27 | 31 | 23 | 2,137 | 23.7 | 6 | 3 | 9 | 6 | 0 | 0 | 3 | 0 | 4.1 | 4.1 | 4.3 | 8.4 | 82 | 205 | 91 | 0.25 | 0.13 | 0.38 | 0.25 | 0.38 | 0.17 | 0.18 | 0.35 | 0.17 | 0.35 |
Leroy Sané | de GER | DL | 22 | 31 | 21 | 1,867 | 20.7 | 10 | 10 | 20 | 10 | 0 | 0 | 1 | 0 | 6.7 | 6.7 | 7.4 | 14.1 | 84 | 67 | 341 | 0.48 | 0.48 | 0.96 | 0.48 | 0.96 | 0.32 | 0.36 | 0.68 | 0.32 | 0.68 |
John Stones | eng ENG | DF | 24 | 24 | 20 | 1,764 | 19.6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.3 | 0.3 | 0.2 | 0.6 | 44 | 118 | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.03 | 0.02 | 0.03 |
Riyad Mahrez | dz ALG | DL,CC | 27 | 27 | 14 | 1,343 | 14.9 | 7 | 4 | 11 | 7 | 0 | 1 | 0 | 0 | 5.5 | 4.7 | 4.6 | 9.3 | 87 | 73 | 191 | 0.47 | 0.27 | 0.74 | 0.47 | 0.74 | 0.37 | 0.31 | 0.68 | 0.32 | 0.62 |
Nicolás Otamendi | ar ARG | DF | 30 | 18 | 14 | 1,236 | 13.7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1.3 | 1.3 | 0.2 | 1.5 | 27 | 92 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.01 | 0.11 | 0.10 | 0.11 |
Oleksandr Zinchenko | ua UKR | DF | 21 | 14 | 14 | 1,151 | 12.8 | 0 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 | 1.5 | 1.7 | 47 | 95 | 94 | 0.00 | 0.23 | 0.23 | 0.00 | 0.23 | 0.01 | 0.12 | 0.13 | 0.01 | 0.13 |
Vincent Kompany | be BEL | DF | 32 | 17 | 13 | 1,224 | 13.6 | 1 | 0 | 1 | 1 | 0 | 0 | 6 | 0 | 0.3 | 0.3 | 0.0 | 0.3 | 17 | 83 | 3 | 0.07 | 0.00 | 0.07 | 0.07 | 0.07 | 0.02 | 0.00 | 0.02 | 0.02 | 0.02 |
Kevin De Bruyne | be BEL | CC | 27 | 19 | 11 | 975 | 10.8 | 2 | 2 | 4 | 2 | 0 | 0 | 2 | 0 | 1.4 | 1.4 | 5.7 | 7.0 | 50 | 109 | 88 | 0.18 | 0.18 | 0.37 | 0.18 | 0.37 | 0.13 | 0.52 | 0.65 | 0.13 | 0.65 |
Benjamin Mendy | fr FRA | DF | 24 | 10 | 10 | 900 | 10.0 | 0 | 5 | 5 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 | 1.6 | 1.8 | 48 | 70 | 59 | 0.00 | 0.50 | 0.50 | 0.00 | 0.50 | 0.02 | 0.16 | 0.18 | 0.02 | 0.18 |
Danilo | br BRA | DF | 27 | 11 | 9 | 807 | 9.0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0.4 | 0.4 | 0.2 | 0.6 | 20 | 77 | 33 | 0.11 | 0.00 | 0.11 | 0.11 | 0.11 | 0.05 | 0.02 | 0.07 | 0.05 | 0.07 |
Gabriel Jesus | br BRA | DL | 21 | 29 | 8 | 1,036 | 11.5 | 7 | 3 | 10 | 6 | 1 | 1 | 1 | 0 | 11.2 | 10.5 | 2.3 | 12.7 | 35 | 21 | 128 | 0.61 | 0.26 | 0.87 | 0.52 | 0.78 | 0.97 | 0.20 | 1.17 | 0.91 | 1.11 |
Fabian Delph | eng ENG | DF | 28 | 11 | 8 | 725 | 8.1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0.1 | 0.1 | 0.3 | 0.4 | 20 | 59 | 23 | 0.00 | 0.12 | 0.12 | 0.00 | 0.12 | 0.01 | 0.04 | 0.06 | 0.01 | 0.06 |
Phil Foden | eng ENG | CC | 18 | 13 | 3 | 335 | 3.7 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2.1 | 2.1 | 0.9 | 3.0 | 23 | 18 | 35 | 0.27 | 0.00 | 0.27 | 0.27 | 0.27 | 0.57 | 0.23 | 0.80 | 0.57 | 0.80 |
Philippe Sandler | nl NED | DF | 21 | 0 | 0 | |||||||||||||||||||||||||||
Arijanet Muric | xk KVX | PO | 19 | 0 | 0 | |||||||||||||||||||||||||||
Claudio Bravo | cl CHI | PO | 35 | 0 | 0 | |||||||||||||||||||||||||||
Total del equipo | 26.7 | 38 | 418 | 3,420 | 38.0 | 91 | 71 | 162 | 88 | 3 | 4 | 44 | 1 | 84.3 | 81.3 | 65.5 | 146.7 | 1325 | 2429 | 2412 | 2.39 | 1.87 | 4.26 | 2.32 | 4.18 | 2.22 | 1.72 | 3.94 | 2.14 | 3.86 | ||
Total del equipo | 26.7 | 38 | 418 | 3,420 | 38.0 | 91 | 71 | 162 | 88 | 3 | 4 | 44 | 1 | 84.3 | 81.3 | 65.5 | 146.7 | 1325 | 2429 | 2412 | 2.39 | 1.87 | 4.26 | 2.32 | 4.18 | 2.22 | 1.72 | 3.94 | 2.14 | 3.86 |
Los goles esperados también se pueden encontrar en varias páginas diferentes, como las estadísticas de los jugadores de la liga, los informes de los partidos, las páginas de los jugadores y los registros de los partidos de los jugadores.
Competiciones FBref con datos de xG
- Copa Mundial de la FIFA (2018 to 2022)
- Copa Mundial Femenina de la FIFA (2019 to 2023)
- Eurocopa Femenina (2022)
- Liga de Campeones de la UEFA (2017-2018 to 2024-2025)
- Liga de Campeones Femenina de la UEFA (2021-2022 to 2024-2025)
- Liga Europea de la UEFA (2017-2018 to 2024-2025)
- American National Women's Soccer League (2019 to 2025)
- Brazilian Série A (2019 to 2025)
- English Championship (2018-2019 to 2024-2025)
- English Premier League (2017-2018 to 2024-2025)
- English Women's Super League (2018-2019 to 2024-2025)
- French Ligue 1 (2017-2018 to 2024-2025)
- French Première Ligue (2021-2022 to 2024-2025)
- German Bundesliga (2017-2018 to 2024-2025)
- German Frauen-Bundesliga (2022-2023 to 2024-2025)
- Italian Serie A (2020-2021 to 2024-2025)
- Italian Serie A (2017-2018 to 2024-2025)
- Italian Serie B (2018-2019 to 2024-2025)
- Major League Soccer (2018 to 2025)
- Spanish La Liga (2017-2018 to 2024-2025)
- Spanish Liga F (2022-2023 to 2024-2025)
Somos sociales... para los Statheads
Todas las cuentas de redes sociales de Sports Reference
Última actualización del sitio: Sunday, March 2, 9:32PM
¿Pregunta, comentario, sugerencia o corrección?
Suscríbete a nuestro boletín informativo gratuito por correo electrónico
Suscríbase a Stathead Hockey: obtenga su primer mes GRATIS
Su entrada al acceso total a la base de datos de referencia de hockey FBref
¿Tienes una página web deportiva o escribes sobre deportes? Tenemos herramientas y recursos que pueden ayudarte a utilizar los datos deportivos. Obtén más información.