Explicación de xG

What is xG?

Very simply, xG (or expected goals) is the probability that a shot will result in a goal based on the characteristics of that shot and the events leading up to it. Some of these characteristics/variables include:

Every shot is compared to thousands of shots with similar characteristics to determine the probability that this shot will result in a goal. That probability is the expected goal total. An xG of 0 is a certain miss, while an xG of 1 is a certain goal. An xG of .5 would indicate that if identical shots were attempted 10 times, 5 would be expected to result in a goal.

There are a number of xG models that use similar techniques and variables, which attempt to reach the same conclusion. The model that FBref uses is provided by Opta. Opta's xG model includes a number of factors above just factors such as the location and angle. Their model also accounts for the clarity of the shooter's path to the goal, the amount of pressure the shooter is under from defensive players, the position of the goalkeeper, and more. That means that their xG model factors in the defense and goalkeeping when determining the odds of the shot reaching the goal.

Take this Diego Jota goal vs Southampton for example. The shot was taken directly in front of the goal from very close range. It's a very good chance. Using an older model that accounts for location, angle, pass type, and such, it would have a 0.68 xG. However, Opta's model also accounts for the fact that the goalkeeper is out of position and there's no defender in the way, which boosts the xG of this shot even higher, to 0.90.

xG does not take into account the quality of player(s) involved in a particular play. It is an estimate of how the average player or team would perform in a similar situation.

How xG is used

xG has many uses. Some examples are:

Penalty Kicks

Each penalty kick is worth .79 xG since all penalty kicks share the same characteristics. Comparing a player's goals from penalty kicks to their penalty kick xG can indicate a player's penalty kicking ability. Likewise, we can do the same for goalkeepers in these situations.

FBref's xG totals include penalty kicks unless otherwise noted. For xG excluding PK, we recommend using npxG (non-penalty expected goals).

How we calculate xG totals for a single offensive possession

In some cases, a player or team's xG totals do not equal the sum of their shots. For instance, a team may attempt multiple shots in a single possession, but it is likely that these shots are contingent upon the outcome of the previous shot(s).

Take for example, this match between Schalke 04 and Nürnberg:

View Match Highlights on YouTube

In the 78th minute, Nürnberg attempted three shots which ultimately led to a goal. Hanno Behrens attempts a shot that is saved, but he is able to take a second shot as the ball is deflected off the defender. The second shot goes off the woodwork, which allows Adam Zreľák to easily tap it in. According to Opta's expected goals model:

The sum of these three shots is 1.67 expected goals, even though it is impossible to score more than one goal in a single move. To solve this problem, we find the probability that the defending team does not allow a goal in this possession. In this case, the calculation is:

(1 - .41) x (1 - .47) x (1 - .79) = .0657 or a 6.57% probability that Schalke does not allow a goal.

To find Nürnberg's xG, we simply subtract that probability from 1:

1 - .0657 = .9343 xG

In other words, we estimate that an average team in a similar situation would be expected to score a goal 93.43% of the time.

We use a similar method when calculating xG for individual players. Adam Zreľák receives .79 xG from his single shot while Hanno Behrens receives:

1 - (1 - .41) x (1 - .47) = .6873 xG

This shows why a team or player's total xG may not equal the sum of the xG from their shots and why a team's total xG may not equal the sum of the xG from their players.

Possessions that include a penalty kick

Similarly, we include shots taken from a rebound after a penalty kick with xG from penalty kicks. Take this Marco Reus penalty kick for example:

Since the second shot is a result of the first, we use the same probabilistic method in the previous example. Rather than a total 1.71 xG (.79 + .92), the calculation is:

1 - (1 - .79) * (1 - .92) = .9832 expected goals

However, since the second shot is also considered to be a part of the penalty kick xG, Reus gets 0 npxG (non-penalty expected goals) on this play.

Note: We treat corner kicks and free kicks as a new possession, not a continuation of the previous possession, but are continuing to study the issue.

¿Qué es Post-Shot xG? (PSxG)?

El xG regular, o lo que se puede considerar "Pre-Shot xG", se calcula considerando todos los tiros en el momento del tiro sin conocer la calidad del intento de tiro. No solo incluye tiros que dan en el blanco, sino también tiros detenidos o desviados. El Post-Shot xG se calcula después de que se ha realizado el tiro, una vez que se sabe que el tiro está en el objetivo, teniendo en cuenta la calidad del tiro. Al igual que con xG, Opta proporciona PSxG y se explica con más detalle here.

Todos los tiros desviados tendrán un PSxG de cero ya que hay un 0 % de probabilidad de que esta trayectoria conduzca a gol.

Al evaluar la capacidad de parada de tiro de un portero, solo queremos incluir los tiros a puerta, ya que estos son los tiros en los que el portero puede tener un impacto. Por ello, utilizamos el PSxG para estimar la calidad de tiros en los que se han enfrentado.

¿Qué es xA (Asistencias esperadas) y xAG (Goles esperados con asistencia)? ¿En qué se diferencian?

xA, o asistencias esperadas, es la probabilidad de que un determinado pase completado se convierta en una asistencia a gol. Esta estadística desarrollada por Opta asigna una probabilidad a todos los pases basados en el tipo de pase, la ubicación en el campo, la fase de juego y la distancia recorrida. Los jugadores reciben xA por cada pase completado, independientemente de si se ha producido un tiro o no.

Para aislar los xG en los pases que asisten a un tiro, hay Goles esperados con asistencia (xAG). Esto indica la capacidad de un jugador para crear ocasiones de gol sin tener que depender del resultado real del tiro o de la suerte/habilidad del tirador. Los jugadores reciben xAG únicamente cuando se realiza un tiro tras un pase completado.

Utilizamos xG+xAG para indicar las participaciones en los goles, ya que estas suelen ser goles + asistencias y se ajustan mejor a la norma.

Antes de octubre de 2022, utilizábamos xA para referirnos a los Goles esperados con asistencia (ahora xAG). Cuando sustituimos nuestro proveedor de datos por Opta, nos proporcionaron su versión de xA descrita anteriormente. Hicimos el cambio de nombre a xAG. Opta: Qué son las asistencias esperadas.

Dónde encontrar los xG

Los xG del equipo, los xG en contra y los xG diferenciales se pueden encontrar en las tablas de ligas, como esta:

Liga Premier Table
RL Equipo PJ PG PE PP GF GC DG Pts xG xGA xGD
1Manchester City3832249523+729884.324.7+59.6
2Liverpool3830718922+679773.728.8+44.9
3Chelsea3821986339+247258.636.4+22.2
4Tottenham38232136739+287154.947.1+7.8
5Arsenal38217107351+227060.154.2+5.8
6Manchester Utd38199106554+116661.450.6+10.8
7Wolves38169134746+15752.142.1+10.1
8Everton38159145446+85449.745.7+4.0
9Leicester City38157165148+35252.443.7+8.7
10West Ham38157165255-35247.661.9-14.3
11Watford38148165259-75048.259.2-11.0
12Crystal Palace38147175153-24947.650.1-2.5
13Newcastle Utd38129174248-64539.153.6-14.5
14Bournemouth38136195670-144553.357.2-3.9
15Burnley38117204568-234044.462.1-17.7
16Southampton38912174565-203946.955.1-8.2
17Brighton3899203560-253635.359.1-23.8
18Cardiff City38104243469-353442.461.5-19.1
19Fulham3875263481-472641.368.2-26.8
20Huddersfield3837282276-541628.860.9-32.2

Los xG, npxG y xA del jugador se pueden encontrar en las páginas de los equipos, como esta:

Estadísticas estándar 2018-2019 Manchester City: Premier League Table
Tiempo Jugado Rendimiento Expectativa Progresión Por 90 Minutos
Jugador País Posc Edad PJ Titular Mín 90 s Gls. Ass G+A G-TP TP TPint TA TR xG npxG xAG npxG+xAG PrgC PrgP PrgR Gls. Ast G+A G-TP G+A-TP xG xAG xG+xAG npxG npxG+xAG
Edersonbr BRAPO2438383,42038.0011000200.00.00.10.10300.000.030.030.000.030.000.000.000.000.00
Aymeric Laportees ESPDF2435343,05734.0336300303.03.00.83.89429490.090.090.180.090.180.090.020.110.090.11
Bernardo Silvapt PORCC,DL2336312,85431.77714700307.47.47.815.21521562770.220.220.440.220.440.230.250.480.230.48
Raheem Sterlingeng ENGDL2334312,77130.81792617003013.713.79.623.3155874360.550.290.840.550.840.440.310.760.440.76
Sergio Agüeroar ARGDL3033312,45927.32182919224018.116.55.021.581762530.770.291.060.700.990.660.180.850.600.79
Kyle Walkereng ENGDF2833302,77930.9112100300.80.81.92.783220920.030.030.060.030.060.030.060.090.030.09
David Silvaes ESPCC3233282,40126.76814600207.87.88.516.31182702220.220.300.520.220.520.290.320.610.290.61
Fernandinhobr BRACC3329272,37726.4134100501.61.63.04.558236290.040.110.150.040.150.060.110.170.060.17
İlkay Gündoğande GERCC2731232,13723.7639600304.14.14.38.482205910.250.130.380.250.380.170.180.350.170.35
Leroy Sanéde GERDL2231211,86720.71010201000106.76.77.414.184673410.480.480.960.480.960.320.360.680.320.68
John Stoneseng ENGDF2424201,76419.6000000100.30.30.20.64411850.000.000.000.000.000.020.010.030.020.03
Riyad Mahrezdz ALGDL,CC2727141,34314.97411701005.54.74.69.387731910.470.270.740.470.740.370.310.680.320.62
Nicolás Otamendiar ARGDF3018141,23613.7000000101.31.30.21.5279230.000.000.000.000.000.100.010.110.100.11
Oleksandr Zinchenkoua UKRDF2114141,15112.8033000100.20.21.51.74795940.000.230.230.000.230.010.120.130.010.13
Vincent Kompanybe BELDF3217131,22413.6101100600.30.30.00.3178330.070.000.070.070.070.020.000.020.020.02
Kevin De Bruynebe BELCC27191197510.8224200201.41.45.77.050109880.180.180.370.180.370.130.520.650.130.65
Benjamin Mendyfr FRADF24101090010.0055000100.20.21.61.84870590.000.500.500.000.500.020.160.180.020.18
Danilobr BRADF271198079.0101100100.40.40.20.62077330.110.000.110.110.110.050.020.070.050.07
Gabriel Jesusbr BRADL212981,03611.573106111011.210.52.312.735211280.610.260.870.520.780.970.201.170.911.11
Fabian Delpheng ENGDF281187258.1011000110.10.10.30.42059230.000.120.120.000.120.010.040.060.010.06
Phil Fodeneng ENGCC181333353.7101100002.12.10.93.02318350.270.000.270.270.270.570.230.800.570.80
Philippe Sandlernl NEDDF2100
Arijanet Muricxk KVXPO1900
Claudio Bravocl CHIPO3500
Total del equipo26.7384183,42038.09171162883444184.381.365.5146.71325242924122.391.874.262.324.182.221.723.942.143.86
Total del equipo26.7384183,42038.09171162883444184.381.365.5146.71325242924122.391.874.262.324.182.221.723.942.143.86

Los goles esperados también se pueden encontrar en varias páginas diferentes, como las estadísticas de los jugadores de la liga, los informes de los partidos, las páginas de los jugadores y los registros de los partidos de los jugadores.

Competiciones FBref con datos de xG