xG erklärt
What is xG?
Very simply, xG (or expected goals) is the probability that a shot will result in a goal based on the characteristics of that shot and the events leading up to it. Some of these characteristics/variables include:
- Location of shooter: How far was it from the goal and at what angle on the pitch?
- Body part: Was it a header or off the shooter's foot?
- Type of pass: Was it from a through ball, cross, set piece, etc?
- Type of attack: Was it from an established possession? Was it off a rebound? Did the defense have time to get in position? Did it follow a dribble?
Every shot is compared to thousands of shots with similar characteristics to determine the probability that this shot will result in a goal. That probability is the expected goal total. An xG of 0 is a certain miss, while an xG of 1 is a certain goal. An xG of .5 would indicate that if identical shots were attempted 10 times, 5 would be expected to result in a goal.
There are a number of xG models that use similar techniques and variables, which attempt to reach the same conclusion. The model that FBref uses is provided by Opta. Opta's xG model includes a number of factors above just factors such as the location and angle. Their model also accounts for the clarity of the shooter's path to the goal, the amount of pressure the shooter is under from defensive players, the position of the goalkeeper, and more. That means that their xG model factors in the defense and goalkeeping when determining the odds of the shot reaching the goal.
Take this Diego Jota goal vs Southampton for example. The shot was taken directly in front of the goal from very close range. It's a very good chance. Using an older model that accounts for location, angle, pass type, and such, it would have a 0.68 xG. However, Opta's model also accounts for the fact that the goalkeeper is out of position and there's no defender in the way, which boosts the xG of this shot even higher, to 0.90.
xG does not take into account the quality of player(s) involved in a particular play. It is an estimate of how the average player or team would perform in a similar situation.
How xG is used
xG has many uses. Some examples are:
- Comparing xG to actual goals scored can indicate a player's shooting ability or luck. A player who consistently scores more goals than their total xG probably has an above average shooting/finishing ability.
- A team's xG difference (xG minus xG allowed) can indicate how a team should be performing. A negative goal difference but a positive xG difference might indicate a team has experienced poor luck or has below average finishing ability.
- xG can be used to assess a team's abilities in various situations, such as open play, from a free kick, corner kick, etc. For example, a team that has allowed more goals from free kicks than their xGA from free kicks is probably below average at defending these set pieces.
- A team's xGA (xG allowed) can indicate a team's ability to prevent scoring chances. A team that limits their opponent's shots and more importantly, limits their ability to take high probability shots will have a lower xGA.
Penalty Kicks
Each penalty kick is worth .79 xG since all penalty kicks share the same characteristics. Comparing a player's goals from penalty kicks to their penalty kick xG can indicate a player's penalty kicking ability. Likewise, we can do the same for goalkeepers in these situations.
FBref's xG totals include penalty kicks unless otherwise noted. For xG excluding PK, we recommend using npxG (non-penalty expected goals).
How we calculate xG totals for a single offensive possession
In some cases, a player or team's xG totals do not equal the sum of their shots. For instance, a team may attempt multiple shots in a single possession, but it is likely that these shots are contingent upon the outcome of the previous shot(s).
Take for example, this match between Schalke 04 and Nürnberg:
View Match Highlights on YouTube
In the 78th minute, Nürnberg attempted three shots which ultimately led to a goal. Hanno Behrens attempts a shot that is saved, but he is able to take a second shot as the ball is deflected off the defender. The second shot goes off the woodwork, which allows Adam Zreľák to easily tap it in. According to Opta's expected goals model:
- Behrens' first shot with the goalkeeper in his way = .41 xG
- Behrens' second shot with the goalkeeper out of position but a defender in the way = .47 xG
- Zreľák's shot with an open net = .79 xG
The sum of these three shots is 1.67 expected goals, even though it is impossible to score more than one goal in a single move. To solve this problem, we find the probability that the defending team does not allow a goal in this possession. In this case, the calculation is:
(1 - .41) x (1 - .47) x (1 - .79) = .0657
or a 6.57% probability that Schalke does not allow a goal.
To find Nürnberg's xG, we simply subtract that probability from 1:
1 - .0657 = .9343 xG
In other words, we estimate that an average team in a similar situation would be expected to score a goal 93.43% of the time.
We use a similar method when calculating xG for individual players. Adam Zreľák receives .79 xG from his single shot while Hanno Behrens receives:
1 - (1 - .41) x (1 - .47) = .6873 xG
This shows why a team or player's total xG may not equal the sum of the xG from their shots and why a team's total xG may not equal the sum of the xG from their players.
Possessions that include a penalty kick
Similarly, we include shots taken from a rebound after a penalty kick with xG from penalty kicks. Take this Marco Reus penalty kick for example:
- As mentioned above, the penalty kick attempt = .79 xG
- The second shot after the rebound, from 2 yards and with the goalkeeper unrecovered from the save = .92 xG
Since the second shot is a result of the first, we use the same probabilistic method in the previous example. Rather than a total 1.71 xG (.79 + .92), the calculation is:
1 - (1 - .79) * (1 - .92) = .9832 expected goals
However, since the second shot is also considered to be a part of the penalty kick xG, Reus gets 0 npxG (non-penalty expected goals) on this play.
Note: We treat corner kicks and free kicks as a new possession, not a continuation of the previous possession, but are continuing to study the issue.
Was ist Post-Shot xG (PSxG)?
Reguläres xG, oder was als „Pre-Shot xG“ bezeichnet werden kann, wird unter Berücksichtigung aller Schüsse zum Zeitpunkt des Schusses berechnet, ohne die Qualität des Schussversuchs zu kennen. Dazu gehören nicht nur Schüsse, die das Ziel treffen, sondern auch Schüsse, die abgewehrt werden oder das Ziel verfehlen. Post-Shot xG wird nach der Schussabgabe berechnet, sobald bekannt ist, dass der Schuss das Ziel getroffen hat, wobei die Qualität des Schusses berücksichtigt wird. Wie xG wird auch PSxG von Opta zur Verfügung gestellt und hier näher erläutert.
Alle Schüsse, die das Ziel verfehlen, haben einen PSxG-Wert von Null, da die Wahrscheinlichkeit, dass diese Flugbahn zu einem Tor führt, bei 0 % liegt.
Bei der Bewertung der Schussabwehr eines Torhüters wollen wir nur Schüsse berücksichtigen, die das Ziel treffen, da dies die Schüsse sind, auf die der Torhüter Einfluss nehmen kann. Daher verwenden wir PSxG, um die Qualität der Schüsse einzuschätzen, mit denen sie konfrontiert wurden.
Was ist xA (erwartete Vorlagen) und xAG (erwartete Torvorlagen)? Worin unterscheiden sich diese Angaben?
xA, oder erwartete Vorlagen, ist die Wahrscheinlichkeit, dass ein bestimmter, erfolgreicher Pass in eine Torvorlage umgewandelt wird. Diese von Opta entwickelte Statistik ordnet allen Pässen anhand der Art des Passes, der Position auf dem Spielfeld, der Spielphase und der zurückgelegten Distanz eine entsprechende Wahrscheinlichkeit zu. Für jeden erfolgreichen Pass erhalten die Spieler xA, ungeachtet dessen, ob ein Schuss ausgeführt wurde oder nicht.
Um die xG für Pässe einzugrenzen, die eine Vorlage für einen Schuss darstellen, gibt es den Indikator „Erwartete Vorlagen“ (xAG). Dies zeigt die Fähigkeit eines Spielers an, Torchancen vorzubereiten, ohne sich auf das tatsächliche Ergebnis des Schusses oder das Glück bzw. die Fähigkeit des Schützen verlassen zu müssen. Spieler erhalten xAG nur dann, wenn ein Schuss nach einem erfolgreichen Pass ausgeführt wird.
Wir messen den Torbeitrag mit xG+xAG, da der Beitrag eines Spielers zu einem Tor in der Regel aus Toren + Vorlagen resultiert und dies eher diesem Standard entspricht.
Vor Oktober 2022 verwendeten wir xA für die erwarteten Torvorlagen (jetzt xAG). Als wir von unserem Datenanbieter zu Opta wechselten, boten sie ihre oben beschriebene Version von xA an. Daraufhin haben wir die Bezeichnung in xAG geändert. Opta: Was sind erwartete Vorlagen.
Wo man xG findet
Mannschaft-xG, xG gegen und xG-Unterschied kann in Liga-Tabellen wie diesen gefunden werden:
Rg | Verein | GS | S | U | N | Tf | Tk | TD | Pkt | xG | xGA | xGD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Manchester City | 38 | 32 | 2 | 4 | 95 | 23 | +72 | 98 | 84.3 | 24.7 | +59.6 |
2 | Liverpool | 38 | 30 | 7 | 1 | 89 | 22 | +67 | 97 | 73.7 | 28.8 | +44.9 |
3 | Chelsea | 38 | 21 | 9 | 8 | 63 | 39 | +24 | 72 | 58.6 | 36.4 | +22.2 |
4 | Tottenham | 38 | 23 | 2 | 13 | 67 | 39 | +28 | 71 | 54.9 | 47.1 | +7.8 |
5 | Arsenal | 38 | 21 | 7 | 10 | 73 | 51 | +22 | 70 | 60.1 | 54.2 | +5.8 |
6 | Manchester Utd | 38 | 19 | 9 | 10 | 65 | 54 | +11 | 66 | 61.4 | 50.6 | +10.8 |
7 | Wolves | 38 | 16 | 9 | 13 | 47 | 46 | +1 | 57 | 52.1 | 42.1 | +10.1 |
8 | Everton | 38 | 15 | 9 | 14 | 54 | 46 | +8 | 54 | 49.7 | 45.7 | +4.0 |
9 | Leicester City | 38 | 15 | 7 | 16 | 51 | 48 | +3 | 52 | 52.4 | 43.7 | +8.7 |
10 | West Ham | 38 | 15 | 7 | 16 | 52 | 55 | -3 | 52 | 47.6 | 61.9 | -14.3 |
11 | Watford | 38 | 14 | 8 | 16 | 52 | 59 | -7 | 50 | 48.2 | 59.2 | -11.0 |
12 | Crystal Palace | 38 | 14 | 7 | 17 | 51 | 53 | -2 | 49 | 47.6 | 50.1 | -2.5 |
13 | Newcastle Utd | 38 | 12 | 9 | 17 | 42 | 48 | -6 | 45 | 39.1 | 53.6 | -14.5 |
14 | Bournemouth | 38 | 13 | 6 | 19 | 56 | 70 | -14 | 45 | 53.3 | 57.2 | -3.9 |
15 | Burnley | 38 | 11 | 7 | 20 | 45 | 68 | -23 | 40 | 44.4 | 62.1 | -17.7 |
16 | Southampton | 38 | 9 | 12 | 17 | 45 | 65 | -20 | 39 | 46.9 | 55.1 | -8.2 |
17 | Brighton | 38 | 9 | 9 | 20 | 35 | 60 | -25 | 36 | 35.3 | 59.1 | -23.8 |
18 | Cardiff City | 38 | 10 | 4 | 24 | 34 | 69 | -35 | 34 | 42.4 | 61.5 | -19.1 |
19 | Fulham | 38 | 7 | 5 | 26 | 34 | 81 | -47 | 26 | 41.3 | 68.2 | -26.8 |
20 | Huddersfield | 38 | 3 | 7 | 28 | 22 | 76 | -54 | 16 | 28.8 | 60.9 | -32.2 |
Spieler-xG, -npxG und -xA können auf den Mannschaftsseiten wie diesen gefunden werden:
Spielzeit | Leistung | Erwartet | Spieleröffnung | Pro 90 Minuten | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spieler | Land | Pos | Alt | GS | Startelf | Min. | 90 | Tor | Vor | T+V | T-Elf | Elf | VeElf | Gelb | Rot | xG | npxG | xAG | npxG+xAG | PrgC | PrgP | PrgR | ||||||||||
Ederson | br BRA | TW | 24 | 38 | 38 | 3.420 | 38.0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.1 | 0,1 | 0 | 3 | 0 | 0,00 | 0,03 | 0,03 | 0,00 | 0,03 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Aymeric Laporte | es ESP | DF | 24 | 35 | 34 | 3.057 | 34.0 | 3 | 3 | 6 | 3 | 0 | 0 | 3 | 0 | 3.0 | 3.0 | 0.8 | 3,8 | 94 | 294 | 9 | 0,09 | 0,09 | 0,18 | 0,09 | 0,18 | 0,09 | 0,02 | 0,11 | 0,09 | 0,11 |
Bernardo Silva | pt POR | MF,FW | 23 | 36 | 31 | 2.854 | 31.7 | 7 | 7 | 14 | 7 | 0 | 0 | 3 | 0 | 7.4 | 7.4 | 7.8 | 15,2 | 152 | 156 | 277 | 0,22 | 0,22 | 0,44 | 0,22 | 0,44 | 0,23 | 0,25 | 0,48 | 0,23 | 0,48 |
Raheem Sterling | eng ENG | FW | 23 | 34 | 31 | 2.771 | 30.8 | 17 | 9 | 26 | 17 | 0 | 0 | 3 | 0 | 13.7 | 13.7 | 9.6 | 23,3 | 155 | 87 | 436 | 0,55 | 0,29 | 0,84 | 0,55 | 0,84 | 0,44 | 0,31 | 0,76 | 0,44 | 0,76 |
Sergio Agüero | ar ARG | FW | 30 | 33 | 31 | 2.459 | 27.3 | 21 | 8 | 29 | 19 | 2 | 2 | 4 | 0 | 18.1 | 16.5 | 5.0 | 21,5 | 81 | 76 | 253 | 0,77 | 0,29 | 1,06 | 0,70 | 0,99 | 0,66 | 0,18 | 0,85 | 0,60 | 0,79 |
Kyle Walker | eng ENG | DF | 28 | 33 | 30 | 2.779 | 30.9 | 1 | 1 | 2 | 1 | 0 | 0 | 3 | 0 | 0.8 | 0.8 | 1.9 | 2,7 | 83 | 220 | 92 | 0,03 | 0,03 | 0,06 | 0,03 | 0,06 | 0,03 | 0,06 | 0,09 | 0,03 | 0,09 |
David Silva | es ESP | MF | 32 | 33 | 28 | 2.401 | 26.7 | 6 | 8 | 14 | 6 | 0 | 0 | 2 | 0 | 7.8 | 7.8 | 8.5 | 16,3 | 118 | 270 | 222 | 0,22 | 0,30 | 0,52 | 0,22 | 0,52 | 0,29 | 0,32 | 0,61 | 0,29 | 0,61 |
Fernandinho | br BRA | MF | 33 | 29 | 27 | 2.377 | 26.4 | 1 | 3 | 4 | 1 | 0 | 0 | 5 | 0 | 1.6 | 1.6 | 3.0 | 4,5 | 58 | 236 | 29 | 0,04 | 0,11 | 0,15 | 0,04 | 0,15 | 0,06 | 0,11 | 0,17 | 0,06 | 0,17 |
İlkay Gündoğan | de GER | MF | 27 | 31 | 23 | 2.137 | 23.7 | 6 | 3 | 9 | 6 | 0 | 0 | 3 | 0 | 4.1 | 4.1 | 4.3 | 8,4 | 82 | 205 | 91 | 0,25 | 0,13 | 0,38 | 0,25 | 0,38 | 0,17 | 0,18 | 0,35 | 0,17 | 0,35 |
Leroy Sané | de GER | FW | 22 | 31 | 21 | 1.867 | 20.7 | 10 | 10 | 20 | 10 | 0 | 0 | 1 | 0 | 6.7 | 6.7 | 7.4 | 14,1 | 84 | 67 | 341 | 0,48 | 0,48 | 0,96 | 0,48 | 0,96 | 0,32 | 0,36 | 0,68 | 0,32 | 0,68 |
John Stones | eng ENG | DF | 24 | 24 | 20 | 1.764 | 19.6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.3 | 0.3 | 0.2 | 0,6 | 44 | 118 | 5 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,02 | 0,01 | 0,03 | 0,02 | 0,03 |
Riyad Mahrez | dz ALG | FW,MF | 27 | 27 | 14 | 1.343 | 14.9 | 7 | 4 | 11 | 7 | 0 | 1 | 0 | 0 | 5.5 | 4.7 | 4.6 | 9,3 | 87 | 73 | 191 | 0,47 | 0,27 | 0,74 | 0,47 | 0,74 | 0,37 | 0,31 | 0,68 | 0,32 | 0,62 |
Nicolás Otamendi | ar ARG | DF | 30 | 18 | 14 | 1.236 | 13.7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1.3 | 1.3 | 0.2 | 1,5 | 27 | 92 | 3 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,10 | 0,01 | 0,11 | 0,10 | 0,11 |
Oleksandr Zinchenko | ua UKR | DF | 21 | 14 | 14 | 1.151 | 12.8 | 0 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 | 1.5 | 1,7 | 47 | 95 | 94 | 0,00 | 0,23 | 0,23 | 0,00 | 0,23 | 0,01 | 0,12 | 0,13 | 0,01 | 0,13 |
Vincent Kompany | be BEL | DF | 32 | 17 | 13 | 1.224 | 13.6 | 1 | 0 | 1 | 1 | 0 | 0 | 6 | 0 | 0.3 | 0.3 | 0.0 | 0,3 | 17 | 83 | 3 | 0,07 | 0,00 | 0,07 | 0,07 | 0,07 | 0,02 | 0,00 | 0,02 | 0,02 | 0,02 |
Kevin De Bruyne | be BEL | MF | 27 | 19 | 11 | 975 | 10.8 | 2 | 2 | 4 | 2 | 0 | 0 | 2 | 0 | 1.4 | 1.4 | 5.7 | 7,0 | 50 | 109 | 88 | 0,18 | 0,18 | 0,37 | 0,18 | 0,37 | 0,13 | 0,52 | 0,65 | 0,13 | 0,65 |
Benjamin Mendy | fr FRA | DF | 24 | 10 | 10 | 900 | 10.0 | 0 | 5 | 5 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 | 1.6 | 1,8 | 48 | 70 | 59 | 0,00 | 0,50 | 0,50 | 0,00 | 0,50 | 0,02 | 0,16 | 0,18 | 0,02 | 0,18 |
Danilo | br BRA | DF | 27 | 11 | 9 | 807 | 9.0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0.4 | 0.4 | 0.2 | 0,6 | 20 | 77 | 33 | 0,11 | 0,00 | 0,11 | 0,11 | 0,11 | 0,05 | 0,02 | 0,07 | 0,05 | 0,07 |
Gabriel Jesus | br BRA | FW | 21 | 29 | 8 | 1.036 | 11.5 | 7 | 3 | 10 | 6 | 1 | 1 | 1 | 0 | 11.2 | 10.5 | 2.3 | 12,7 | 35 | 21 | 128 | 0,61 | 0,26 | 0,87 | 0,52 | 0,78 | 0,97 | 0,20 | 1,17 | 0,91 | 1,11 |
Fabian Delph | eng ENG | DF | 28 | 11 | 8 | 725 | 8.1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0.1 | 0.1 | 0.3 | 0,4 | 20 | 59 | 23 | 0,00 | 0,12 | 0,12 | 0,00 | 0,12 | 0,01 | 0,04 | 0,06 | 0,01 | 0,06 |
Phil Foden | eng ENG | MF | 18 | 13 | 3 | 335 | 3.7 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2.1 | 2.1 | 0.9 | 3,0 | 23 | 18 | 35 | 0,27 | 0,00 | 0,27 | 0,27 | 0,27 | 0,57 | 0,23 | 0,80 | 0,57 | 0,80 |
Philippe Sandler | nl NED | DF | 21 | 0 | 0 | |||||||||||||||||||||||||||
Arijanet Muric | xk KVX | TW | 19 | 0 | 0 | |||||||||||||||||||||||||||
Claudio Bravo | cl CHI | TW | 35 | 0 | 0 | |||||||||||||||||||||||||||
Mannschaft insgesamt | 26.7 | 38 | 418 | 3.420 | 38.0 | 91 | 71 | 162 | 88 | 3 | 4 | 44 | 1 | 84.3 | 81.3 | 65.5 | 146,7 | 1325 | 2429 | 2412 | 2,39 | 1,87 | 4,26 | 2,32 | 4,18 | 2,22 | 1,72 | 3,94 | 2,14 | 3,86 | ||
Mannschaft insgesamt | 26.7 | 38 | 418 | 3.420 | 38.0 | 91 | 71 | 162 | 88 | 3 | 4 | 44 | 1 | 84.3 | 81.3 | 65.5 | 146,7 | 1325 | 2429 | 2412 | 2,39 | 1,87 | 4,26 | 2,32 | 4,18 | 2,22 | 1,72 | 3,94 | 2,14 | 3,86 |
Erwartete Tore können auf verschiedenen Seiten wie Liga-Spielerstatistiken, Spielberichte, Spielerseiten und Spieler-Spielprotokolle.
FBref-Wettbewerbe mit xG-Daten
- FIFA Frauen-Weltmeisterschaft (2019 to 2023)
- FIFA Weltmeisterschaft (2018 to 2022)
- UEFA Champions League (2017-2018 to 2024-2025)
- UEFA Europa League (2017-2018 to 2024-2025)
- UEFA Women's Champions League (2021-2022 to 2024-2025)
- UEFA-Fußball-Europameisterschaft der Frauen (2022)
- American National Women's Soccer League (2019 to 2025)
- Brazilian Série A (2019 to 2025)
- English Championship (2018-2019 to 2024-2025)
- English Premier League (2017-2018 to 2024-2025)
- English Women's Super League (2018-2019 to 2024-2025)
- French Ligue 1 (2017-2018 to 2024-2025)
- French Première Ligue (2021-2022 to 2024-2025)
- German Bundesliga (2017-2018 to 2024-2025)
- German Frauen-Bundesliga (2022-2023 to 2024-2025)
- Italian Serie A (2020-2021 to 2024-2025)
- Italian Serie A (2017-2018 to 2024-2025)
- Italian Serie B (2018-2019 to 2024-2025)
- Major League Soccer (2018 to 2025)
- Spanish La Liga (2017-2018 to 2024-2025)
- Spanish Liga F (2022-2023 to 2024-2025)
Soziale Medien...für Statheads
Alle Social-Media-Seiten von Sports Reference
Seite zuletzt aktualisiert: Sunday, March 2, 9:32PM
Fragen, Anregungen, Feedback oder Verbesserungsvorschläge?
Gratis-E-Mail-Newsletter abonnieren
Stathead FBref abonnieren: Erster Monat GRATIS
Sichere dir den vollen Zugriff auf die FBref-Datenbank
Betreibst du eine Sport-Website? Oder schreibst du über Sport? Wir haben Tools und Mittel, die dir bei der Verwendung von Sportdaten helfen können. Hier erfährst du mehr.